
Construction and Verification of Software – 2019/2020

Second Self Assessment Test 16 June, 2020

Notes: This is the self-assessment test of the course. It is designed to be closed book and for a duration of 1h30m.
There are 4 open answer questions.

Version: A

Name: Number:

Q-1 Consider the following Java class annotated with separation logic assertions (using verifast syntax), and com-
plete the code with the weakest preconditions, and strongest post-conditions that completes the code below, so that
verifast checks it without errors.

//@ predicate ClockInv(Clock c; int s) = c.seconds |-> s &*& s >= 0;

class Clock {

int seconds;

void sync(Clock other)

{ other.seconds = this.seconds; }

int to(Clock other)

{ return other.seconds - this.seconds; }

public static void main(String[] args)

//@ requires [_]System_out(?s) &*& s != null;

//@ ensures true;

{

Clock c1 = new Clock();

Clock c2 = new Clock();

c1.sync(c2);

System.out.println(c1.to(c1));

}

}

1



Construction and Verification of Software - Second Self Assessment Test - 16 June, 2020 page 2 of 3

Q-2 Select the incorrect Separation Logic triple represented by the method definitions below. Assume defined a
class Clock with a field named seconds, and class Timer with a method toSeconds.

A - public void m(Clock c1, Timer t)

//@ requires c1 != null &*& c1.seconds |-> _ &*& t != null;

//@ ensures c1.seconds |-> _ ;

{ c1.seconds = t.toSeconds(); }

B - public void m(Clock c1, int amount)

//@ requires c1 != null &*& c1.seconds |-> _;

//@ ensures c1.seconds |-> amount;

{ c1.seconds = amount; }

C - public void m(Clock c1, Timer t)

//@ requires c1 |-> ?seconds &*& t != null;

//@ ensures c1 |-> seconds &*& t != null;

{ c1.seconds = t.toSeconds(); }

D - public void m(Clock c1, Timer t)

//@ requires c1 != null &*& c1.seconds |-> _ &*& t != null;

//@ ensures true;

{ c1.seconds = t.toSeconds(); }

Q-3 Choose a set of predicates that is suitable to represent a binary tree using objects of class BTNode.

class BTNode {

int value; BTNode left, right;

BTNode(int v)

//@ requires true;

//@ ensures Tree(this);

{ value = v; left = right = null; }

...

}



Construction and Verification of Software - Second Self Assessment Test - 16 June, 2020 page 3 of 3

Q-4 Consider an ADT that representing a calendar object with the following interface.

public interface Calendar {

/*@

predicate CalendarInv(boolean rw);

@*/

Appointment addAppointment(String description, Date date, int minutes, User[] attendees);

//@ requires CalendarInv(true) &*& description != null &*& date != null &*& attendees != null;

//@ ensures CalendarInv(true) &*& result != null;

void removeAppointment(Appointment a);

//@ requires CalendarInv(true) &*& a != null &*& a.isValid();

//@ ensures CalendarInv(true);

boolean isFree(Date date, int minutes);

//@ requires CalendarInv(_) &*& date != null;

//@ ensures CalendarInv(_);

Appointment[] listAppointments(Date startDate, Date endDate);

//@ requires CalendarInv(_) &*& startDate != null &*& endDate != null &*& lessOrEqual(startDate,endDate);

//@ ensures CalendarInv(_);

void LockCalendar();

//@ requires CalendarInv(true);

//@ ensures CalendarInv(false);

void UnlockCalendar();

//@ requires CalendarInv(false);

//@ ensures CalendarInv(true);

boolean isReadOnly();

//@ requires CalendarInv(?rw);

//@ ensures CalendarInv(rw) &*& result == rw;

}

Notice that predicate CalendarInv must be defined by all classes that implement the interface Calendar. Implement
a concurrent wrapper ADT that uses an instance of the (sequential) ADT interface Calendar and uses a monitor and
related conditions to control the exclusive acces to the object and establish the preconditions of the operations above.
Note: You do not need to write all verifast close and open operations, but you should state what is the shared state and the
predicates ensured by each condition.

Q-5 Consider the following implementation for function linearOrderedLookup

public static int linearOrderedLookup(int[] a, int x) throws IllegalArgumentException {

if (a == null || a.length == 0) throw new IllegalArgumentException();

int i = 0;

for(; i < a.length && a[i] < x; i++);

if( i == a.length ) return -1;

return i;

}

1. Present the control flow graph of the function to support the design of glass-box tests (with unrolled loops).

2. Produce a test for each path in the graph (identify the path that corresponds to each path)


